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An expression for the pressure is proposed which leads to a symmetric equation of 
state for liquid and gas near the critical point. Our "bubble-droplet" formula is similar 
to Fisher's cluster expansion but contains an additional term due to the density de- 
pendence of the surface tension. Also, it assumes the density difference between a 
droplet (or bubble) and the surrounding medium to be proportional to 1-1/~ and not 
to be independent of the droplet size l. Then, the scaling homogeneity assumption and 
some scaling laws, including dv = 2 -- % can be derived (d is dimensionality). The 
additional assumption of spherical droplets and bubbles leads to a new scaling law 
1 -]-/~ = (d -- 1)v, which is only slightly violated in the lattice gas for d = 2, 3, 4. 

KEY W O R D S :  Surface tension; scaling laws; droplet model; critical point. 

1. I N T R O D U C T I O N  

Fisher ' s  th ree-d imens iona l  l iquid  d rop le t  mode l  (1,2) is a semiphenomenolog ica l  
descr ip t ion  o f  a gas near  the l iqu id-gas  t ransi t ion.  I t  takes into account  small  l iquid 
drople ts  in the gas phase be low the cri t ical  t empera tu re  Tc i f  the chemical  po ten t i a l / z  
is smaller  than  some/zc(T)  analyt ic  in tempera ture .  F o r / z  > / z ~ ,  there is a divergence 
in the d rop le t  model  which is in te rpre ted  as the ins tabi l i ty  due to the fo rma t ion  o f  
macroscop ic  l iquid droplets .  Thus , /x  = / z ~  gives the  coexistence curve where the  gas 
condenses  in to  the l iquid. However ,  the d rop le t  mode l  cannot  describe the l iquid 
phase  which exists f o r / x  >~/x~ and  T < Tc and  which behaves  s imilar ly to the gas 
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phase very near T~. This violation of the experimentally established symmetry 
between liquid and gas near the critical point is due to the fact that only droplets in 
the gas phase and no bubbles in the liquid phase are taken into account a). In this 
paper, we propose a formula which can be interpreted as taking into account both 
bubbles and droplets, and which fulfills this symmetry requirement without leading 
to unallowable singularities at the critical isotherm (~). Our proposed formula was 
found mainly from mathematical considerations about how to fulfill the various 
requirements with expressions similar to Fisher's droplet model. We hope this 
publication will help others in finding a better physical justification than we are giving 
now. (Another symmetric expression was given by Fisher(a); see also Ref. 4.) 

We outline in the next section Fisher's droplet model (1), and in Section 3 our 
proposed bubble-droplet formula. Section 4 discusses, for general dimensionality d, 
the volume, the surface area, and the radius of the droplets and bubbles. Also discus- 
sed are the scaling law dv = 2 -- e~ and a new relation 1 + / 3  = ( d -  1)v resulting 
from the assumption: surface oc (volume)(a-1)/d. For Section 4, one does not have to 
assume the particular formula proposed in Section 3. In Section 5, various qualitative 
properties of our bubble-droplet formula are derived. We use the standard notation 
for the critical indices (1). 

2. T H E  DROPLET  P ICTURE 

Here, the equation of state for the simple droplet picture is made plausible. 
In Fisher's asymmetric droplet model,(1) the free energyf~ of a droplet containing l 

molecules consists of a bulk term proportional to I, a surface term = (surface free 
energy) • (surface area) oc (T~ -- T) P, and a positive logarithmic term 7 k T  In l. 
All terms are analytic in temperature. Various theories for the logarithmic term have 
been proposed in connection with the nucleation of supersaturated vapors, (~) most 
of them not giving the desired positive value of ~- ( = 2  + 1/S = 2.2). A positive 
contribution around k T l n  l can be found from the fact that the wavelengths of  
excitations are restricted in a finite droplet. (6,14) The essential advantage of 
Fisher's droplet model is that this factor ~-, the exponent cr for the surface area, and 
the microscopic surface tension are not determined from theories but introduced 
as free parameters to be fitted to the bulk properties like coexistence curve and critical 
isotherm (7 = 2 + l/S, ~ = 1/~fi). An application to the nucleation process is 
compared by Eggington et al. (7) with experiments near T~. 

The number n~ of droplets with I molecules is then assumed to be 

exp[--(f~ -- izl)/kT], 

and the pressure is P = Zz  n~ k T  as a generalization of the ideal gas equation of  the 
ideal gas equation P = nl k T  (p = aP/atz = Zz nil, as it should be). Thus, any 
droplet-droplet interaction is neglected. The coexistence curve is reached if/zl, the 
chemical potential per droplet, equals the bulk term in f~ ; for larger/~, the sum 
diverges: we have condensation. Thus, the pressure in Fisher's droplet picture is 

P / k T  = qo ~ l-~-x~'~ff (1) 
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with ln x = t /D ("surface"), ln y = t ~ / k T  - const ("bulk"), ~ = 1/313 < 1, 
~- = 2 + 1/3. Here, D and qo are constants (roughly, D = 1/2, qo = pal5), and 
t = ( T -  Te)/To. The coexistence curve is given by y = 1; for y > 1, the sum 
diverges. The particle density p is ~(P/kT)/3(ln y). In order to have p ~ pc above 
To (x > 1), we need (z) lny(pc)pc t*~; this contradicts (21 experiment and scaling 
analyticity assumptions and means that we cannot use the formula for paramagnets 
above To ( y  = e -H in suitable units for the magnetic field H). Reatto 14) recently 
proposed a simple modification of (1) which avoids this nonanalytic behavior, may 
give p(y  = 1) = po above Tc, but is still not symmetric. 

In addition, for spherical droplets in three dimensions, the surface exponent 
should be 2/3; for nonspherical ones, it may be greater but not smaller. However, 
this geometrical condition ~ = 1/3/3 >/2/3 is violated in most cases. Finally, below 
To, only the gas phase, Po > p, and not the liquid phase, p > Pc can be described. 
Nevertheless, for po > p, the overall agreement with experiment is good. (2) 

3. T H E  B U B B L E - D R O P L E T  F O R H U L A  

Here, heuristict arguments are given for an improved ansatz. 
In order to have a more symmetric model, we not only need droplets but also 

bubbles. We assume that for bubbles and droplets of the same size, the surface terms 
are the same, whereas the bulk term changes its sign. An expression like 
~, l-~x~(yZ + y-a), however, would nearly alaways diverge. But near the critical 
point, there will also exist bubbles within the droplets, and droplets within the bubbles 
within the droplets, etc. Perhaps this series has some similarity with a geometric 
series (see below). The expression Z / - ' [ cons t  + x ~ ( y  z 4- y -1)]-1 indeed never diverges 
and is symmetric for liquid (y >~ 1) and gas (y ~< 1). However, this sum does not 
yield a coexistence curve, where for one x and y we have two different densities, 
pL and PG for liquid and gas, respectively. Also, an equation p = f ( x ,  y)  can give 
two values for p if x or y depend on p. Indeed, there is a physical reason to introduce 
a p-dependent x: --ln x is a (microscopic) surface tension, and any surface tension 
should be the larger the greater the density difference between the two media separated 
by the surface. Thus, we might write near the critical point ( p m  po) for the high 
density droplets: Surface free energy per molecule = --ln x pc [--t(const -- p + po)]; 
and correspondingly --t(const + p -- pc) for the low-density bubbles. However, the 
term const ~ (p -- pc) is not compatible with the desired scaling homogeneity near T~. 

In order to circumvent this difficulty, we apply an idea of Kadanoff's. (8~ Until 
now, we assumed the droplets (bubbles) to have a constant density much greater 
smaller) than the surrounding density p ~ pc. However, if the scaling law dv = 

+ 2/3 is valid, then the order-parameter fluctuations in a volume ~:d (d is dimen- 
sionality, ~: is coherence length) have the same temperature dependence at the 
coexistence curve as the equilibrium order parameter (and the same field dependence 
at the critical isotherm). I f  we identify our bubbles and droplets with these small 
fluctuations around the average density p, then the difference between droplet (bubble) 
density and the surrounding density p should vanish if the critical point is reached. 
The typical droplet size is proportional to ( - - t )  -1/~ and (A/x) -1 according to Eq. (1). 

822/3/3-6 
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Thus, w e  c h o o s e  p d r o p l e t  - -  p ~ P - -  pbubb l e  0(2 [-1/~ similarly t o  K a d a n o f f ' s  proposal. 
More precisely, Paroplet--P and p -  Pbubble should be the same if p = pc. If, 
however, p > p~, the, at least in a lattice gas (0 ~< p ~< 2p~), the maximum density 
fluctuation for a droplet (2p~ -- p) is smaller than for a bubble (p -- 0); thus, we also 
expect the typical density flucutuation to be smaller for a droplet than for a bubble. 
(The opposite should occur if p < p~ .) The (microscopic) surface tension is therefore 
assumed to be proportional to t[l-~/~ ~: (p - -  pc) const], with plus for bubbles and 
minus for droplets. With a surface area proportional to I%, we thus have a surface 
free energy proportional to [tl ~ 4- tl~'(Ap) const] = tl  ~ • tP+~/~(Ap) const. This 
expression is compatible with scaling homogeneity. Here, a = ~' - -  1/3 is no longer 
identical to the surface area exponent a', but still given by a = 1/Sfl (cf. Reatto 141) 

Using these assumptions, the result would be 

P = Po -- kTqo ~ I-~(a -k xV'yZz ~+'/~ -~ xty-tz-'~ -1 
t--1 

(2a) 

Here, Po,  with ~Po/Ol~ = Pc,  is an analytic term not connected with bubbles and 
droplets. On the critical isochore above T, and on the coexistence curve below T~, 
y is equal to unity and/z  ----/~, is analytic in t. Contrary to (1), the sum (2) never 
diverges. 

The main points unsolved in our "deverivation" are the contributions of bubbles 
within droplets, etc. These complicated configurations seem to be essential for the 
critical behavior because with 

az = xZ~y~z z~+l/~ + xZ'~ y - t z  -t'~+I/~ (2e) 

the sum Z l - 'az diverges; it corresponds in our interpretation to single bubbles and 
droplets not being included in each other. We do not have a justification for our 
geometric series ansatz (2a): Z l-'~f(at) with f (az )  = (a + at) -1. Thus, we write our 
final proposal more generally as 

o 0  

P = eo - -  kTqo ~ 1- ' f (at)  (2f) 
Z=I 

with an unknown functionf.  Convergence is ensured if f and its derivatives are finite 
for a~ -~ 0 and vanish for at --~ Go not slower than some negative power of at �9 Also, 
this general function f is an approximation only because the bubble within a droplet 
may be larger or smaller than the droplet, however, is not esential phenomena because 
we will find agreement with scaling laws although we neglected this effect. 

Also, in the phenomenological scaling analysis, one uses such unknown functions 
[for example, Ap = t~g(Al~/t~O]. But our function f does bot need to have the com- 
plicated asymptotic properties required for this scaling function g; we can give simple 

In x = t /D,  In y = A/~, In z = - - t  A p / E  (2b) 

t = ( T -  T D / T o ,  Ap = (p --pc)lPo, A~ = (t~ - - tOdk7  ~ (2c) 

q 0 > 0 ,  D > 0 ,  E > 0 ,  a > 2  (2d) 



A Bubble-Droplet Formula 327 

examples for f fulfilling our requirements, whereas no closed expression for the 
scaling function g has yet been proposed. We hope that the detailed shape of our  
unknown func t ion / i s  not very important. 

4. SHAPE OF T H E  DROPLETS A N D  BUBBLES 

Here, relations connecting volume, surface, and radius of  a droplet (bubble) 
are discussed for general dimensionality. 

Our assumption that the density within the droplets and bubles approaches pc 
at the critical point differs from Fisher. m Therefore, the volume V~ of a bubble, where 
l molecules are missing compared to the average density, is not proportional to 1, 
but to //(density difference), which is proportional to 11+1/~ ~ l 1.~. The surface area 
S~ is proportional to P '  = l ~ ~ / o . s .  From geometrical considerations, we would 
like to have in d dimensions: S~V~ 1-d)/a oc P,  with b >~ 0. The additional assumption 
of spherical droplet (or b ~ 0, more generally) leads by S~ oc V~ a-~)/a to the new 
scaling law 

1 + f i =  (d-- 1)v (3) 

Experiments are in general not accurate enough to exclude reliably this relation. 
In the Ising model, (9) it is slightly violated for d = 2 (1.125 = 1 @ fi > v = 1) and 
nearly correct for d = 3 (1.31 = 1 + fl > 2v = 1.28) and d = 4 (1 -t-/3 ~ 1.5 ~ 3v). 
For d = 3, 4, the deviations are of  the same order of  magnitude as the deviations 
from dv = 2 - -  ~, assumed for our analysis. (Mean field theories are excluded because 
of dv ~ y + 2/3; in the three-dimensional spherical model for isotropic ferromagnets, 
1 -+-/3 = 1.5 < 2v = 2, but our picture with narrow domain walls should be more 
accurate for strongly anisotropic magnets.) Thus, the droplets can be assumed to be 
nearly spherical for d = 3 and d = 4; the deviations for d = 2, 3, 4 from the scaling 
law (3) are in the direction to be expected for nonspherical droplets (b > 0). On the 
other hand, Fisher's droplet picture m gives b = ~ + (1 - -  d) /d  < 0 for d = 3. Thus, 
in general, we no longer need Fisher's not yet justified assumption that due to droplet-  
droplet interactions (excluded volume effects) the effective surface exponent is made 
smaller than the geometrical one for d = 3. Notice that for 1 + / 3  = ( d -  1)v, the 
microscopic surface tension tl-~/~ has for the typical droplets on the coexistence curve 
the same temperature dependence as the macroscopic one. (1~ 

Also, if the droplets are not spherical, the coherence length should be ~ V 1 / d  

for the typical droplet size because the density flucutuations within a volume Vt were 
assumed to be proportional to the equilibrium order parameter. Thus, we have 

oc l(a+~/~)/a = l(2-~)/~ ~ = 1% as it should be. Generally, we interpret l ~ as the radius 
of  a bubble or droplet. We can conclude for dv - -  2 - -  ~, d = 3: 

radius oclo, ~ /o.4 

surface p+l/~ ~ /0.s (4) 

volume p+~/~ ~ p.2 

The scaling law dv = 7 q- 2fi is essentially assumed in our derivation of the 
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bubble-droplet  picture and leads to the homogeneous scaling equation of  state. 
Instead, one might first assume pdrop]et - -  P oC l-*, with arbitrary r If, then, scaling 
homogeneity is assumed for the resulting bubble-droplet  formula, then ~ = 1/8 and 
thus dv = 2 --  ~ (if volume ~,,~:a for the typical bubbles and droplets). 

For large dimensionality d, one expects mean field exponents. Thus dv ~ 2 --  o~ 
for d > 4, in contradiction to our results. Also, for d ~ o% the surface area should 
be proportional to the volume; but it is not in our formula. Why is our picture wrong 
for large dimensionality ? One possible reason might be that all our singularities 
come from the bubbles and droplets and not from the molecules in between. This 
approximation is probably wrong for d -~ o% because the volume of a unit sphere 
zcd/Z/(d/2)! shrinks rapidly for large d. Thus, for high dimensionality, only the con- 
tributions of  a very small fraction of molecules are taken into account; this can hardly 
be a good approximation. According to this argument, already for d = 3 our results 
should be worse than for d = 2. And indeed, in the lattice gas, dv = 2 --  ~ is exact 
for d = 2 and slightly violated for d = 3. 

5. Q U A L I T A T I V E  PROPERTIES OF THE BUBBLE-DROPLET 
F O R H U L A  

Now we discuss some properties of our ansatz (2f). 

Symmetry and Analyticity. The sum for the pressure is completely sym- 
metric for liquid and gas: I f  Ap  -+ - - A p ,  Atz -~  --Al~, then x --+ x,  y -~  l /y ,  z --+ 1/z; 
thus, the sum remains unchanged. Because of ~P/~lz = p, this means that Ap  is an 
antisymmetric function of A/x, as it should be very near the critical point. 

[The rectilinear diameter ~ = (pL 4- pa)/2 equals Pc if we neglect the temperature 
dependence of the analytic part  P0(t x, T) in (2). This is correct in magnets or lattice 
gases; but for real fluids, /5 --  po oct  or oot1-% We can generalize (2) by choosing 
~Po/~t x = Pc 4- const �9 t 4- --- and In z = - - t (o  - -  ~Po/~tx)/Epc. Then, t5 = ~Po/~lX is 
analytic in t; and above To, p = ePo/Otz ~ po at zero "field" In y (maximum of 
~/z/~ not at p~). This finite slope of the diameter means a "skew axis ' 'm  for p. Now, 
above To, tz(Oc, T) --/~(Pc, To) oc t~+~; thus,/~c(t) is not analytic as in Refs. 1, 2, 
but d21~c/dt ~ is continuous at To, in agreement with experiment. (2) This result might 
be important independent of any droplet theories. From now on, we neglect this 
possible finite slope of rectilinear diameter # (cf. Stauffer et a/.(~5)).] 

Away from the critical point, the pressure (2f) with the choices f = 1/(a 4- a~) 
o r f  = e x p ( - - a J a )  is probably analytic in t and A/x apart  f rom essential singularities 
for AIx = 0 both above and below Tc �9 

Homogeneity. The derivative with respect to /x  gives [using f '  = df(a~)/da~ 
with a~ from (2e)] 

- - A p  = qo [1 o-1+1/~. ~(Ap) /~1 tl- x 7'(e  - 1 / e 3  - 1 , (Sa) 
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or, with M* = Ap/At~/~, t* = t /At~,  v = l AtL, A/z > 0: 

o o  

- - M *  = q~ f vl-~[exp(t*v~/D)lf'(ez - -  1/e~) 
pe o 

�9 [1 + V~-l+l/~t * ( a t *  dM* M* 
E )] (5b) 

Here, we used the abbreviation e, = y~z ~+~/~ = exp(v - -  t*v~+~/~M*/E). Equation (5b) 
fulfills as well as (1), the scaling homogeneity assumption. I t  is a first-order differential 
equation ep/OtL = F(p, i x, t). [The equation of state is roughly correct for f =  1/(a -k a~), 
a =  2, 5, q0/p~ = 5, D = 1, E =  3/2.] 

C o e x i s t e n c e  Curve .  For  A = / x 0  above T~, there should be no solution 
Ap v~ 0 of (5a); below T~ for A/~ = 0, we need, besides the trivial solution Ap = O, 
another one with A t) ~ 0: the coexistence curve�9 We see that (5) might fulfill this 
requirement; for, if we replace I by its typical value [ t 1-6~ for small A/z, replace f '  
by a negative constant, and neglect the correction term ocP-~+i/~, then (3a) looks like 
Ap [ t] -~ = Q[exp(l t [-~~ --  t] t l-~-~Ap/E) --  exp(--[ t I-~BAlz § t [ t [-~-~AtL/E)] 
with positive Q. Above T~, the only solution for At~ = 0 is Ap = 0; below T~, there 
is another solution if Q < El2. 

Cri t i ca l  I s o t h e r m .  At T~, the critical isotherm Ap = M ' A t o l l  ~, for 
f = 1/(a + as), is given by 

o o  

M *  = q o f vl_~[(e ~ _ e_~)/(a + e ~ @ e_~)~p dv = qo/5p~ 
Pc o 

(6) 

for a = 2�9149 The correction terms to this asymptotic AI~ oo Ap~ law are known for 
the Ising modellm: at T = T~, Ap o= AIW~(1 -? consh Ap ~/~ + const2 Ap ~-~ + "').  
I f  we do not replace the sum (2) by the integral (6). we find a Ap 8-1 term arising 
from the missing l = 0 term�9 But no Ap ~/~ correction can be found because at T = T~, 
only ~- and not ~ = (~- - -  2)/~ occurs�9 [This holds as well for Fisher's simple formula 
(1).] Thus, one should not use (1) or (2) except very near the critical point, where 
large droplets only are important. 

Specific Meat .  For  ~ = 0, the specific-heat singularities for A/x = 0 above 
and below T~ are proportional to the divergences in d2P• 2, where P+ is the pressure 
on the critical isochore and P -  the vapor pressure�9 We find for the singular part  the 
expected symmetric logarithmic peak; with the choice f (a , )  = 1/(a + as), it is 

C+ " - -  C ~ , s i r t g  - -  ] ( ' q o ( r  ~- fl) 2D-~( a --  2)(a q- 2) -a In [ t -* [ (7) v , S l D g  - -  

The specific heat is infinite (for ~ >~ 0) only at t = 0, Ap = 0. This is not obvious 
a priori; for, the specific heat might diverge below T~ in the interior of  the coexistence 
curve if ~p/~l z = oo ("spinodal line"), because here the flucutations of  the density 

diverge�9 
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Compress ib le  Spin Systems. According to Wagner,  r the xZ~y z term in the 
droplet model  should be multiplied by w ? (w < 1 = const), if thermal lattice vibra- 
tions are taken into account  in a ferromagnet  below To (t < to), this effect causes a 
rounding of  the specific heat and of  other singularities. A n  analogous correction to 
our  bubble-droplet  formula  (2) would give similar rounding effects above and below 
T0. But according to Wagner,  112) ;~ is the exponent for the droplet radius; in our  
picture (Section 4), this exponent is ev ~ 0.4 instead o f  Wagner ' s  2~ = or/2 ~ 0.3. 
Then, Wagner 's  t, for nickel (----3 ~ 10 -6) is enlarged by one order o f  magnitude. 

6. D I S C U S S I O N  

We conclude that  our  bubble-droplet  formula  fulfills the homogenei ty  and symmetry 
requirements o f  the scaling laws and most  of  their analyticity assumptions. I t  also 
allows us to assume the droplets as (nearly) spherical, giving a new scaling law 
1 + / 3  = 2v. Using this and the other scaling laws, we can determine all critical 
exponents f rom 3. For  nonpolar  fluids, ~ can be calculated ~131 by a semiempricical 
formula f rom the compressibility factor P, /pckTo .  I f  the equals 0.27, we find 

= -q = 0, fi = 1/3, v = 2/3, y = 4/3, ~ = 5. The disadvantage o f  our  proposed 
formula is its complicated nature. Also we would like to have a more reliable physical 
justification for it, in particular for the f u n c t i o n f  

A C K N O W L E D G M E N T S  

We thank Prof. M. E. Fisher, Dr. P. C. Hohenberg,  Prof. L. P. Kadanoff,  and 
Dr. A. Levelt Sengers for suggestions and discussions, as well as Prof. H. Schmidt 
for the possibility to perform this work in Munich. 

R E F E R E N C E S  

I. M. E. Fisher, Physics 3:255 (1967); M. E. Fisher and B. U. Felderhof, Ann. Phys. 58:176, 217, 
268, 281 (1970). 

2. C. S. Kiang and D. Stauffer, Z. Physik 235:130 (1970). 
3. M. E. Fisher, private communication. 
4. J. B. Jalickee et al., preprint; L. Reatto, Phys. Letters 33A:519 (1970). 
5. J. L. Katz, d. Stat. Phys. 2(2):137 (1970), and references therein. 
6. F. H. Stillinger, Jr., J. Chem. Phys. 47:2513 (1967). 
7. A. Eggington, C. S. Kiang, D. Stauffer, and G. H. Walker, Phys. Rev. Letters 26:820 (1971). 
8. L. P. Kadanoff, Lecture Notes, International School of Physics "Enrico Fermi," LI course: 

Critical Phenomena, Varenna, 1970. 
9. M. A. Moore, Phys. Rev. B1:2238 (1970), and references therein. 

10. S. Fisk and B. Widom, o r. Chem. Phys. 50:3219 (1969); D. Stauffer, Z. Physik 221:122 (1969). 
11. C. Domb, talk at Varenna (Ref. 8). 
12. H. Wagner, Phys. Rev. Letters 25:31 (1970). 
13. C. S. Kiang, Phys. Rev. Letters 24:47 (1970). 
14. C. S. Kiang, D. Stauffer, G. H. Walker, O. P. Purl, J. D. Wise, Jr., and E. M. Patterson, to be 

published. 
15. D. Stauffer, C. S. Kiang, G. H. Walker, O. P. Puri, J. D. Wise, Jr., and E. M. Patterson, Phys. 

Letters 35A:172 (1971). 


